

Radio Club de l'Avesnois F6KTN

Kicad : Logiciel de conception de circuits imprimés

Généralités3
Documentation et prise en main4
Eeschema
Vérification des erreurs6
Simulation6
PcbNew8
Considérations sur les impositions de routage8
Exemple d'association correcte9
Exemple d'association incorrecte
Visualisateur 3D 11
Vérification des erreurs12
Mise en fabrication du Cl13
Création des fichiers <i>gerber</i> 13
Lire les fichiers gerber14
Lancement en fabrication
Prix

Généralités

Kicad est un logiciel de conception de schémas électroniques et de circuits imprimés d'utilisation gratuite, non limité en taille de circuit et sans licence. Kicad doit être installé de préférence sur un système d'exploitation 64 bits. Il peut gérer jusque 64 couches. Il possède également un visualisateur 3D. Kicad 6 ne fonctionne qu'à partir de windows 10.

Il est constitué de plusieurs modules programmes permettant de concevoir un CI, dont les deux fondamentaux sont **Eeschema** et **PcbNew**.

Eeschema	:	dessin du schéma de principe
PcbNew	:	conception du circuit imprimé

Ces deux modules sont complétés de plusieurs outils spécifiques :

Un éditeur de symbole de composants (selfs, connecteurs, transistors ...etc) utilisés dans Eeschéma Un éditeur d'empreintes utilisé dans PcbNew

Un visualisateur de fichiers gerber

Un simulateur.

Kicad est capable d'importer des projets *eagle*. Depuis la racine de kicad, faire fichier / importer projet / Eagle cad

Kicad comporte de nombreux raccourcis sur les touches de clavier qui s'utilisent avec aisance avec le temps, ces raccourcis sont les mêmes quel que soit le module programme utilisé. Parmi les plus utilisés on trouve :

M : Move (bouger) R : rotation C : copier Suppr : supprimer E : Editer un élément

Documentation et prise en main

La documentation Kicad est disponible à cette adresse. On peut télécharger les documentations sous forme de PDF :

http://docs.kicad-pcb.org/

qui vous donne accès à une page de documentations par module. Pour avoir les documentations en français, simplement changer **en** par **fr** dans la barre d'adresses : <u>http://docs.kicad-pcb.org/5.1.2/**fr**/getting_started_in_kicad/getting_started_in_kicad.pdf</u>

Pour une bonne prise en main du logiciel, il est **indispensable** de regarder les 7 vidéos relatives à son apprentissage :

KiCad 5, l'essentiel. Partie 1 : Dessiner le schéma électronique youtu.be/C9EWrKw9Qz8

KiCad 5, l'essentiel. Partie 2 : Créer une empreinte youtu.be/U0zn2dS4Jac

KiCad 5, l'essentiel. Partie 3 : Choisir et associer les empreintes aux composants youtu.be/nUZ9vKbhyaY

KiCad 5, l'essentiel. Partie 4 : Importer la netliste et placer les composants

youtu.be/nUZ9vKbhyaY

KiCad 5, l'essentiel. Partie 5 : Spécifier les règles de conception et Router youtu.be/-PCrFnJr3mg

KiCad 5, l'essentiel. Partie 6 : Prendre en compte une modification du schéma dans PCBnew youtu.be/QrjaMSA-i5g

KiCad 5, l'essentiel. Partie 7 : Préparer la sérigraphie et finaliser la couche de fabrication youtu.be/svRIJMCNm-U

Eeschema

Eeschema dessine le schéma de principe. Attention aux labels multinommés, car ils seront tous reliés par le même potentiel.

Les étapes de dessin du schéma sont :

- renseignement du cartouche identifiant le projet
- dépose des composants
- liaison des composants par des fils ou des bus, ils peuvent être labellisés.
- à la fin du dessin, on numérote les composants (annotation des composants) 🕍
- on choisit les empreintes des composants (assigner les empreintes des composants) ou on les édite par composant
- on vérifie l'absence d'erreur
- génération de la netliste pour PCBNEW.

Vérification des erreurs

Pendant le dessin du schéma ou lorsqu'il est terminé, il faut vérifier si le schéma ne comporte pas

d'erreurs. Eschema comporte l'icône equi est l'outil de vérification. Les erreurs sont signalées par des lignes explicitant le problème. Il faut cliquer sur l'élément de référencement géographique en bleu pour que le schéma se positionne sur l'erreur relatée avec une flèche jaune.

Simulation

On peut simuler électroniquement le fonctionnement du circuit. Pour la prise en main de cette fonctionnalité, il faut regarder les vidéos ci dessous :

Simulation avec KiCad 5 #1 : Réponse transitoire et fréquentielle d'un circuit RC youtu.be/aehIYiFCrQU

Simulation avec KiCad 5 #2 : Timer Programmable LM555 youtu.be/8GJplg6eB4Y

Simulation avec KiCad 5 #3 : Générateur carré-triangle à base d'amplificateurs opérationnels youtu.be/bmjYRhTpWU **Simulation avec KiCad 5 #4 : Créer un modèle SPICE (ici un relais) et l'utiliser** youtu.be/icGv5x1yPYs

Simulation avec KiCad 5 #5 : Créer le modèle spice d'un ampli.op. parfait et l'utiliser youtu.be/f0SovhY83gk

PcbNew

Pcbnew est l'éditeur du circuit imprimé.

Pour que la couche vernis du dessous soit disponible, il faut la sélectionner :

Fichier / options du CI / couches et cocher « B.Mask »

Il n'y a pas de routage automatique. Le routage s'effectue en dessinant les lignes à l'aide du bouton « route pistes » sur la couche sélectionnée. Les règles de routage (épaisseur de piste, zone d'isolations etc) sont définis dans les options du CI.

Il est néanmoins possible de router le CI par un programme tiers (FreeRouter) qui est une application java se trouvant dans le répertoire bin du programme « LayoutEditor ». Il faut lancer le fichier *freeRouting.jar* pour lequel on peut créer un raccourci. Voir la documentation page 29 après ce document.

Considérations sur les impositions de routage

Fichier / options du CI / classes d'équipot :

On définit en général 2 classes d'équipotentielles : une pour les alimentations dont les pistes seront « épaisses » et une autre pour les autres pistes de « petits signaux ».

Couches	Classes d'Equipots								
Textes et Graphiques	Nom	Isolation	Largeur Piste	Diam Via	Perçage Via	Diamètre uVia	Perçage µVia	Largeur Paire Diff	Dist Paire D
Regles de Conception	Default	0,2 mm		0,8 mm	0,4 mm		0,1 mm	0,2 mm	0,25 mm
– Pistes & Vias – Couches Masque/Pâte à Souder	alimentations	0,2 mm	0,5 mm	0,8 mm	0,4 mm	0,3 mm	0,1 mm	0,2 mm	0,25 mm
	+ Membres de Netclass Filtrage Nets Filtre nom de Filtre nom de net:				• Net +12P +12V		_	Ci ai ai	asse d'Equipo mentations imentations
	Montrer Tous Assigner NetClass Nouvelle Classe	i les Nets	Appl	iquer Filtres	+12VA +5V +5VP -5V /PTT/Cl /PTT/Cl	PTT1 PTT2		al al al Di Di Di	mentations mentations mentations fault
	Montrer Tous Assigner NetClass Nouvelle Classe Attribuer aux N	s les Nets	Appl	iquer Filtres	+12VA +5V +5VP -5V • /PTT/CI /PTT/CI	PTT1 PTT2 PTT3		al al al Di Di Di Di Di	mentations mentations mentations fault anult
	Montrer Tous Assigner NetClass Nouvelle Classe Attribuer aux N	s les Nets	Appl Attribuer aux	iquer Filtres « Nets Sélectionn	+12VA +5V +5VP -5V /PTT/CI /PTT/CI /PTT/CI	PTT1 PTT2 PTT3 PTT4		al al al D D D D D D	mentations mentations mentations mentations efault efault efault

Dans l'exemple ci dessus, les pistes d'alimentation feront 0,5 mm alors que toutes les autres pistes feront 0,3 mm. L'isolation (zone minimale séparant deux potentiels quels qu'ils soient (pastillepiste-via) est de 0,2 mm. Cette configuration permet à une piste de passer entre les pattes d'un circuit intégré au pas de 2,54. Empreintes : attention aux numérotations sur les connecteurs et les empreintes. La numérotation des broches doit être la même sur le composant que sur l'empreinte :

Exemple d'association correcte

Soit le composant connecteur : Connector_Generic:Conn_02x02_Odd_Even dont la numérotation est la suivante:

Empreinte : En appuyant sur E : on peut attribuer l'empreinte à utiliser pour ce connecteur : Connector_PinHeader_2.54mm:PinHeader_2x02_P2.54mm_Vertical

Nom	Valeur	Visible	Alignement H	Alignement V	Italique	Gras	Taille du Texte
Référence	15	V	Centrer	Centrer			1,270 mm
Valeur	Conn_02x02_Odd_Even	V	Centrer	Centrer			1,270 mm
Empreinte	PinHeader_2.54mm:PinHeader_2x02_P2.54mm_Vertical 🌇		Centrer	Centrer			1,270 mm
Documentation	~		Centrer	Centrer	1		1,270 mm
+ 1				Mise à Jour des	Champs à	ı partir o	des Librairies
+ ↑ ↓			Orientation	Mise à Jour des	Champs à	ı partir o	des Librairies
+ ↑ ↓ Symbole Reference de Libr	rairie: Connector Generic:Conn 02x02 Odd Even		Orientation	Mise à Jour des	Champs à Aspe	ı partir o ct faut	des Librairies
+ Symbole Reference de Libr	rairie: Connector_Generic:Conn_02x02_Odd_Even		Orientation - ● 0 ● +90	Mise à Jour des	Champs à Aspe	ı partir o ct faut roir aut	des Librairies) our de l'axe X
+ • • • • • • • • • • • • • • • • • • •	rairie: Connector_Generic:Conn_02x02_Odd_Even	0	Orientation ● 0 ○ +90 ○ +180	Mise à Jour des	Champs à Aspe @ Dé @ Mi @ Mi	i partir d ct faut roir aut roir aut	des Librairies our de l'axe X our de l'axe Y

Les broches du composant et de l'empreinte doivent être au même endroit géographique. C'est le choix de l'empreinte qui détermine cette empreinte. Attention, Il y a des empreintes numérotées différemment pour le même composant (voir exemple au paragraphe suivant)

Dans PCBNew ce composant est associé à cette empreinte :

Ce qui correspond à cette empreinte réelle :

Exemple d'association incorrecte

Soit le composant suivant : un connecteur 2x2 points dont la numérotation est la suivante :

Avec ce connecteur, il est évident que l'on ne peut pas mettre de strap rigide (cavalier) ni entre 1-3 ni entre 2-4.

Par contre, l'empreinte associée ci dessous permet de le faire. Il y a donc une discordance fonctionnelle entre le composant et l'empreinte associée :

Dans la réalité, ces deux composants ne sont pas associables, même si rien n'empêche de le faire dans le logiciel : les deux sont des composants connecteurs 2x2, mais leur numérotation est différente, ce qui peut être une source d'erreur.

Visualisateur 3D

Vous pouvez voir à quoi ressemble votre carte en réalité par la visualisation 3D en sélectionnant Affichage / 3D visualisateur. Vous pouvez ainsi avoir une meilleure idée de la répartition des composants sur la carte et réaliser que tel connecteur n'est peut être pas correctement positionné.

Vérification des erreurs

A la fin de la réalisation du CI, il faut vérifier les erreurs en cliquant sur l'icône Par précaution, cliquer également sur « signaler toutes les erreurs pour les pistes »

A la fin de la vérification, kicad affiche les erreurs rencontrées dans l'onglet « problèmes marqueurs » mais aussi éventuellement dans l'onglet « Items non connectés ». Il ne faut donc pas oublier de regarder les deux onglets.

Mise en fabrication du Cl

Création des fichiers gerber

Les fabricants de CI utilisent tous des fichiers standardisés au format *gerber* pour la réalisation des CI conçus par ordinateur. Ces fichiers sont générés par kicad dans le dessin du CI (pcbnew).

Il y a un fichier gerber par couche utile, ainsi que deux fichiers de perçage (drill). Les fichiers seront déposés par défaut dans le répertoire */plot* du projet.

Pour générer les fichiers Gerber, sélectionner le menu fichier/tracer :

Tracer				X
Format du tracé: Gerber	▼ Répertoire de sortie: plot/			6
Couches Incluses	Options Générales			
F.Cu	Tracer Cartouche et Encadrement	Marques de perçage:	Aucun	-
In1.Cu In2.Cu	Tracer les valeurs des modules	Échelle:	1:1	*
B.Cu	Tracer les références des modules	Mode de tracé:	Plein	*
F.Paste	Force le tracé des valeurs et/ou références invisibles	Épaiss. ligne par défaut:	0,1	mm
F.SilkS	Exclure les tracés contour PCB des autres couches	Tracé miroir		
B.Mask	🔽 Exclure pads sur sérigraphie	🗌 Tracé en négatif		
Dwgs.User	🔲 Ne pas couvrir les vias			
Ecol.User	Utiliser axe auxiliaire comme origine	👿 Vérifier remplissage z	ones avant tracé	
Eco2.User	Ontions Gerber			
Margin	Utiliser extensions Gerber Protel	Format des Coordonnées:	4.6 (unité mm)	•
B.CrtYd	🔲 Générate fichier Gerber job	📃 Utiliser le format X2 éte	ndu	
F.Fab	🔄 Soustraire masque de la couche sérigraphie	📃 Inclure les attributs de r	netliste	
Messages d'info				
			r	
Monter: 🔲 Tout 🛛 📝	Erreurs 🖉 Avertissements 😨 Actions 😨 I	nfos	Sauv	er
Exécuter DRC		Fermer	Créer Fichiers de Pe	rçage

Dans la liste des couches obligatoires minimales incluses, il faut impérativement sélectionner : **Pistes cuivre :**

F.Cu : cuivre de la face supérieure (Front)
In1.Cu : cuivre interne 1 (en cas de circuit >2 couches)
In2.Cu : cuivre interne 2 (en cas de circuit >2 couches)
B.Cu : cuivre de la face inférieure (Bottom)

Autres couches :

F.Paste : pâte à souder pour la face supérieure : pour le stencil (pochoir pour la pâte à souder)

F.SilkS : Sérigraphie de la face supérieure

F.Mask : vernis de la face supérieure

B.Mask : vernis de la face inférieure **Edge.cuts** : contour du circuit

Si on désire une sérigraphie de la face inférieure, il faut la sélectionner dans les options du circuit car elle n'est pas sélectionnée par défaut (fichier/option du CI/couches : sélectionner B.SkilS)

Si l'on souhaite faire implanter les composants par une société, il faut en plus sélectionner les couches de fabrication des composants : F.fab et éventuellement B.fab (à sélectionner dans les options du CI)

Pour générer les fichiers gerber et drill, cliquer alors sur **Tracer** et **Créer circuits de perçage** et à nouveau **créer fichiers de perçage**.

Les fichiers seront déposés dans le répertoire défini, ici /plot. Ces fichiers doivent être encore compressés en ZIP en un seul fichier.

Lire les fichiers gerber

Lorsque les fichiers gerbers ont été créés, on peut les vérifier avec le visualisateur gerber Le visualisateur gerber ne permet de faire que de l'affichage avec des options de visualisations différentes. On peut charger un fichier ou tous les fichiers ; les fichiers correspondants à une couche chargée affichent un point en face de la couche.

dans l'exemple ci dessus : on affiche la couche B_Cu : cuivre de la face inférieure.

Lancement en fabrication

L'exemple ci dessous montre le lancement en fabrication sur le site **jlcbcb.com**. L'interface est identique chez les autres fabricants. Il est nécessaire d'ouvrir un compte pour la mise en fabrication.

https://jlcpcb.com/quote

Tous les autres paramètres peuvent être laissés par défaut.

Le système affiche alors le prix à payer en haut à droite. La quantité minimale de commande est de 5 exemplaires. Si les fichiers *gerber* ont été correctement interprétés, la page affiche « *succes* ». Vous pouvez visualiser les fichiers gerber du site en cliquant sur « gerber view » pour vérifier vos circuits. Si aucun problème n'est détecté, vous pouvez cliquer sur « *save to cart* » pour mettre le circuit dans le panier.

Il n'y a plus qu'à sélectionner le mode de livraison *DHL express* (env 1 semaine) ou *Air mail* (5,80€ et de 2 à 3 semaines) et le paiement par paypal ou CB.

Si le circuit ne comporte pas d'erreurs, il sera lancé aussitôt en fabrication. En cas de problème vous serez contacté par mail pour fournir des instructions supplémentaires. Pendant la fabrication, vous pouvez suivre l'état d'avancement étape par étape.

Prix

Voici les prix des CI hors port en fonction des couches et des dimensions pour 5 pièces :

100x100	2 couches	1,79€
100x100	4 couches	25,12€
160x100	2 couches	12,02€
160x100	4 couches	36,15€

Liste des plaquettes :

- 1. Introduction au DMR
- 2. Composants radio-électriques passifs particuliers
- 3. Mesures complexes en hautes fréquences
- 4. Adaptations d'impédances
- 5. Réseaux Ethernet et connectivités
- 6. Complément sur les adaptations d'impédances
- 7. Lignes de transmissions
- 8. Kicad : logiciel de conception des circuits imprimés